Extensions 1→N→G→Q→1 with N=C22.D4 and Q=S3

Direct product G=N×Q with N=C22.D4 and Q=S3
dρLabelID
S3×C22.D448S3xC2^2.D4192,1211

Semidirect products G=N:Q with N=C22.D4 and Q=S3
extensionφ:Q→Out NdρLabelID
C22.D41S3 = C22⋊C4⋊D6φ: S3/C3C2 ⊆ Out C22.D4484C2^2.D4:1S3192,612
C22.D42S3 = C6.792- 1+4φ: S3/C3C2 ⊆ Out C22.D496C2^2.D4:2S3192,1207
C22.D43S3 = C6.1202+ 1+4φ: S3/C3C2 ⊆ Out C22.D448C2^2.D4:3S3192,1212
C22.D44S3 = C6.1212+ 1+4φ: S3/C3C2 ⊆ Out C22.D448C2^2.D4:4S3192,1213
C22.D45S3 = C6.822- 1+4φ: S3/C3C2 ⊆ Out C22.D496C2^2.D4:5S3192,1214
C22.D46S3 = C6.612+ 1+4φ: S3/C3C2 ⊆ Out C22.D448C2^2.D4:6S3192,1216
C22.D47S3 = C6.1222+ 1+4φ: S3/C3C2 ⊆ Out C22.D448C2^2.D4:7S3192,1217
C22.D48S3 = C6.622+ 1+4φ: S3/C3C2 ⊆ Out C22.D448C2^2.D4:8S3192,1218
C22.D49S3 = C6.632+ 1+4φ: S3/C3C2 ⊆ Out C22.D496C2^2.D4:9S3192,1219
C22.D410S3 = C6.642+ 1+4φ: S3/C3C2 ⊆ Out C22.D496C2^2.D4:10S3192,1220
C22.D411S3 = C6.652+ 1+4φ: S3/C3C2 ⊆ Out C22.D496C2^2.D4:11S3192,1221
C22.D412S3 = C6.662+ 1+4φ: S3/C3C2 ⊆ Out C22.D496C2^2.D4:12S3192,1222
C22.D413S3 = C6.672+ 1+4φ: S3/C3C2 ⊆ Out C22.D496C2^2.D4:13S3192,1223
C22.D414S3 = C6.852- 1+4φ: S3/C3C2 ⊆ Out C22.D496C2^2.D4:14S3192,1224
C22.D415S3 = C6.682+ 1+4φ: S3/C3C2 ⊆ Out C22.D448C2^2.D4:15S3192,1225
C22.D416S3 = C6.692+ 1+4φ: S3/C3C2 ⊆ Out C22.D496C2^2.D4:16S3192,1226
C22.D417S3 = C4⋊C4.197D6φ: trivial image96C2^2.D4:17S3192,1208
C22.D418S3 = C4⋊C428D6φ: trivial image48C2^2.D4:18S3192,1215

Non-split extensions G=N.Q with N=C22.D4 and Q=S3
extensionφ:Q→Out NdρLabelID
C22.D4.1S3 = (C22×C12)⋊C4φ: S3/C3C2 ⊆ Out C22.D4484C2^2.D4.1S3192,98
C22.D4.2S3 = C6.802- 1+4φ: S3/C3C2 ⊆ Out C22.D496C2^2.D4.2S3192,1209
C22.D4.3S3 = C6.812- 1+4φ: S3/C3C2 ⊆ Out C22.D496C2^2.D4.3S3192,1210

׿
×
𝔽